HOW-TO: MAKE AN E-PAPER CLOCK FROM ESQUIRE magazine

author
12 minutes, 2 seconds Read

If you’ve never heard about electronic paper, crawl out from under that rock and read up on the Sony reader and the Amazon Kindle. E-paper is a flexible display made of color-changing beads that simulate ink-on-paper for easy daylight reading. The revolutionary thing about e-paper is that after it’s set, it stays that way without additional power.

This sounds great in theory, but Esquire’s cover is the first time everybody can afford to hack an e-paper display. We took the cover into the Hack a Day lab to document, test, and hack. In the end, we recycled it into something beneficial that any individual can build. We’ve got all the details on how the display works and what it takes to use it in your own projects. read about our e-paper clock hack below.

Pozadie

The Esquire e-paper cover hit big on the net, but was swiftly panned. NOTCOT has beautiful scans of the circuit board and e-paper. popular science posted instructions for reading the code with a PICkit2. [Slaxter] verified that the photo chip can be read, and that the code protection fuses are off. [Matt] manipulated the e-paper cells directly with skillful soldering and an Arduino. So far, there hasn’t been a lot of interest in repurposing the e-paper, or reprogramming the existing microcontroller.

E-paper panels

The actual e-paper panels, manufactured by E-Ink, aren’t that exciting. Each panel has a set of predefined segments, 11 on the front panel and 3 on the rear Ford advertisement. This isn’t a matrix that we can reprogram into an e-reader. [just_mike] has a great set of ultra close-up shots of the individual beads that make up each segment.

Each e-paper segment has an individual connection, and a connection that’s shared with other cells on the panel. The segments become white or black depending on the direction of current applied to the cell. When common is low, any segment that is also connected high will darken. When common is high, each cell connected to ground will clear. The PCB uses 16 volts from five 3.3volt batteries to switch the cells, but [Slaxter] showed that 5volts was sufficient with his Arduino project.

Performance testing
We made several observations about the e-paper operating specifications.

First, it takes nearly 0.5 seconds to completely darken or clear a cell. In the video you can see the partial states created by switching the e-paper too fast. We’re not quite sure of the optimal change time, but between 0.25 and 0.5 seconds seems to be the minimum.

This also raised questions about the maximum change time. Does it damage the e-paper to apply current for longer than necessary? Does the e-paper continue to consume current as long as it’s applied, wasting the batteries? We took special care in our code to return all outputs to ground after a change to avoid a continuous current through the panel.

Clearing and darkening need to be done separately. It takes two complete operations to fully freshen the screen; one to clear old segments, one to darken new segments. A smart programmer will think they can save a cycle when only adding or removing items, and not doing both. This is true to some extent, but continuous manipulation of one cell without refreshing adjacent cells causes color ‘creep’. In the video, a flashing background without updates to any other segments swiftly drives the inactive segments to a mid-state between dark and light.

Driver board

The motorist consists of an eight-pin Microchip PIC12F629, two 4094 shift registers, and some supporting components.

Click here for a full size pin diagram of the e-paper motorist board(PNG).

Batteries

Esquire invited hacks of their cover with the rather lame suggestion of replacing the batteries. This makes sense, the covers were shipped all over the world in refrigerated containers to help extend the battery life. even with that effort, Esquire says that the batteries will last a few months.

Batteries 1-5 are in series and supply a 15-16volt switching current for the e-paper. The sixth battery supplies 3volts for the PIC. No word yet on which batteries die first. If you want to ‘replace’ your batteries, you’ll need to desolder the old ones, and supply a 5-16volt e-paper supply, and 3volt microcontroller supply, at the points indicated.

We eventually had to replace our microcontroller battery because we abused it a bit during development. A button battery holder with 20mm pin spacing will fit the existing holes. Mouser #534-106 will probably work, but this is unconfirmed.

4094 shift registers (IC1, IC2)

The shift registers switch the e-paper segment controls at 16 volts.

The two 4094 ICs are shift registers setup to cascade data from IC1 to IC2. This basic shift register is a minor variation on the 74HTC595 we used in our graffiti wall. The main difference is that the 4094 strobe line is usually low, and briefly pulled high to put new values on the output pins. We observed that the 4094 requires long clock and strobe pulses. This could be due to lazy drive circuitry between the photo and the 4094, or just the nature of the 4000 series.

4094 segment output map

IC

Výkon

Address

Connection

1

Q1

0x01

FRONT_BOX_SYMBOL_DNA

1

Q2

0x02

FRONT_BOX_GUY

1

Q3

0x04

FRONT_BOX_FIREWORKS

1

Q4

0x08

FRONT_ON_THE_WEST_COAST

1

Q5

0x10

FRONT_THREE_HOURS_LATER

1

Q6

0x20

FRONT_ESQUIRE

1

Q7

0x40

FRONT_BOX_GIRL

1

Q8

0x80

FRONT_NOW

2

Q1

0x100

FRONT_BEGINS

2

Q2

0x200

FRONT_21ST_CENTURY

2

Q3

0x400

FRONT_BACKGROUND

2

Q4

0x800

FRONT_COMMON

2

Q5

0x1000

BACK_COMMON

2

Q6

0x2000

BACK_LEFT

2

Q7

0x4000

BACK_CENTER

2

Q8

0x8000

BACK_RIGHT

12F629

Click here for a full size schematic drawing(PNG). An eight pin PIC12F629 drives the 4094 shift registers that control each e-paper segment. two pins are unused (GP4, GP5).

The MCLR feature is enabled with resistor R8. The design doesn’t include a diode to secure the photo from the 13volt programming current. Microchip recommends this, but there’s no other sensitive ICs sharing the circuit so maybe the designer felt a resistor was sufficient protection.

Three pins drive the data, clock, and strobe lines of the 4094 (GP0, GP1, GP2). The 4094 has to be interfaced at the same voltage it switches, 16 volts, so the photo switches the interface pins through transistors. As far as we can tell, the 4094 control lines are pulled high with a resistor. The photo switches a transistor on, and it pulls the line to ground. The interface to the 4094 is backwards. A photo high pin is seen as low at the shift register, and low is seen as high. The interface won’t work unless reversed.

The programming pins are brought to a header at the top of the PCB. We soldered standard .1″ pin header into the holes supplied (Mouser #571-41033290). The two programming pins, PGD and PGC, are shared with the circuitry that drives the shift registers. We were able to read the device with an ICD2 debugger. We couldn’t reprogram it though, probably because of the shift register driver. has any individual had success? Regardless, the shared pin arrangement makes it impossible to do in-circuit debugging on this device.

PIC pin connections

Pin

názov

Connection

1

VDD

+3.3volts

2

GP5

3

GP4

4

GP3

MCLR (program VPP)

5

GP2

4094 Strobe

6

GP1

4094 Clock (program clock)

7

GP0

4094 data (program data)

8

VSS

Ground

Tap the board

It’s easy to tap into the board and use it with your favorite microcontroller. All but one of the required interface signals are already brought to a header. The strobe line can be tapped through the by means of indicated by the arrow. You don’t want the photo to interfere with your new controller, so remove it or deactivate it by severing the power pin.

Interface library

Our first effort to drive the board involved our PIC24F-based tiny web server. It was handy, and the PIC24F is easy to work with. We perfected our interface library on a low-power MSP430. Both versions are in the project archive(ZIP), but the MSP430 version of the library is a lot more mature.

The library includes a software bit-bang routine, functions for interfacing the board, and address definitions for the segment and common lines. options in esquire_eink.h enable a bit-bang delay and set its length; we found the 4094 lazy and in need of a lengthy clock pulse. The initBang() function sets the direction of the pins, and must be changed to suit your microcontroller. call it, or set your IO pins to output elsewhere:

1
bangInit(); //set bitbang pins to output

The setSeg() function sets the passed segments dark (1) or clear (0):

1
2
setSeg(FRONT_BOX_GUY+FRONT_BACKGROUND, 1); //set(dark) these segments
setSeg(FRONT_21ST_CENTURY,0);//clear (light) these segments

The setSeg() function includes a color change delay defined by EINK_DELAY in esquire_eink.h. At the end of the delay it returns the shift register pins to ground. We want to avoid damaging to the e-paper or wasting the batteries, though we don’t really know if this is necessary.

One thing we observed about setSeg() was that manipulating single cells causes adjacent cells to regress toward a mid-color. We developed the setDisplay() function to combat this by fully refreshing the display every time. setDisplay() includes a pause for each change, and then returns the shift register outputs to ground. just pass the segment arrangement for a fully refreshed display:

1
setDisplay(FRONT_ESQUIRE+BACK_LEFT);//XX dark, everything else clear

You can access the shift registers directly with the bangIt() function, but consider returning the shift registers outputs to ‘0’ after the e-paper color change is complete. You could damage the e-paper or cause excessive current drain if you leave it on, if that’s actually ‘a thing’.

1
2
3
bangIt(0b1110000000000000);//all back panel segments on
pause();//wait for the color change
bangIt(0x0000);//return all outputs to ground

To port the library to your miCrocontroller, stačí skontrolovať konfigurácie pin v esquire_eink.h a funkcia Nastavenie PIN banginitu () v esquire_eink.c. Majte na pamäti, že pokyny kolíka sú obrátené tranzistormi rozhrania.

Uvedenie na použitie, e-papierové hodiny

Chceli sme urobiť niečo prospešné s prvým lacným spotrebiteľským e-papierovým panelom. Muselo to byť niečo veľmi jednoduché, takže veľa ľudí môže recyklovať túto chladnú technológiu. Nemohli sme odolať, čo robí tak veľa výroby so starým displejom Tech: Urobte hodiny. Šablóny, firmvérové ​​a umelecké šablóny sú v archíve projektu (.zip).

Na e-papieri je tak málo segmentov, že môžeme len čiastočne predstavovať čas. Šesť segmentov ukazuje čas, z ktorých každá zmizne odhaliť čas na najbližších desať minút za hodinu. Na non-časové segmenty panelu sme tiež blikali oči. Tu je vytvorený kryt, ktorý sme vytvorili. Tento rám a tému, aby sa vytvorili svoje vlastné, sú zahrnuté v archíve projektu (ZIP). Vytlačili sme náš bezel zrkadlený, takže atrament je chránený pred poškriabaním.

Hardvér

Boli sme inšpirovaní vlastnosťami s nízkym výkonom elektronického papiera, aby sme použili Link 16-bitových mikrokontrolérov. S ideálnou konfiguráciou, MSP430 čerpá tak málo energie, že je obmedzená iba dobou použiteľnosti batérie. Môžeme dokonca dať pôvodným dizajnérom a behať za svoje peniaze, a zistite, či môžeme vytvoriť dolné napájacie zariadenie.

Najlepšia vec o MSP430 je, že môžete získať súpravu s USB programátor / debugger a breakout dosky len pre 20 dolárov. Dodáva sa s bezplatným C kompilátorom obmedzeným na 4K, ale F2013 má iba 2K pamäti. Toto je kompletný vývojový nástroj, bez spájkovania. Naučte sa oveľa viac o práci s MSP430 v tejto ako-to.

Toto schematické ukazuje, ako sme pripojili naše MSP430 na motoristickú dosku e-papiera. Kliknite sem pre verziu plnej veľkosti (PNG). 47K rezistor, MSP430 a LED (nie je zobrazená) sú zahrnuté na breakout.

Pridali sme 32,768khz Crystal, aby sme udržali čas (Q1). Normálne by sme tiež pridali niektoré kondenzátory, aby vytvorili oscilátor, ale MSP430 má vstavané nastaviteľné kondenzátory na p2,6 a p2,7.

Pridávali sme aj tlačidlo medzi P1.4 a P1,2 (S1). Vnútorný odporový odpor na P1.4 drží tlačidlo vysoké, a my sme ho uzemniť cez P1.2. Toto nie je najlepšie usporiadanie, pravdepodobne by bolo múdre, aby tiež pripojili P1.2 na zem.

Slidujeme MSP430 Breakout Board cez napájanie a zemné kolíky hlavičky programovania. Môžete pripojiť aj hodiny a dátové kolíky do hlavičky, ale urobili sme rozhodnutie o tom, aby sme ich všetky z VIAS pod ním. Nezabudnite odstrániť fotografiu, takže nezasahuje do signálov z MSP430.

Diely

Číslo

Náklad

Kryt esquire e-papier

MSP430 EZ430 Development Kit

EZ430USB

20 dolárov

32,768KHz Crystal

815-AB26T-32,768KHz

$ 0,27

Tlačidlo

642-MJTP1250

$ 0,16

Firmvér

Hodinový softvér je napísaný s bezplatnou demo verziou kompilátor TI / IAR Cickstart C súčasťou programu EZ430.

MSP430 je veľmi nízky výkon. Používa len 220uA na 1MHz, ale menej ako 6UA pri spaní. Rozhodujúca pre dlhú životnosť batérie je, aby sa čip spí čo najviac. Náš hodinový kód je napísaný s týmto na mysli.

Používame TIMER_A s 32,768kHz Crystal na vytvorenie prerušenia dvakrát za sekundu. Prvý prerušenie spúšťací kód, ktorý konfiguruje segmenty, ktoré sa majú zobraziť, odošle tieto hodnoty do elektronického papiera a potom spí na ďalšie 0,5 sekundy. Kým MSP430 spí, všetky segmenty “off ‘majú čas na čistenie. Nasledujúci prerušenie preklopí spoločné línie na druhý spôsob základného XOR, vydáva hodnoty a prejde na ďalšie 0,5 sekundy. Nabudúce sa cyklus začne znova. Neobťažujeme sa resetovať registre Shift do polohy “0”, pretože osviež sa pravidelne v toku. Segment Creep nie je problémom, pretože každý segment osviežujeme každý cyklus.

Tlačidlo Stlačte spúšťa prerušenie, ktoré postupuje čas na ďalšie 10 minút. Ak chcete nastaviť hodiny, počkajte, kým nie je čas aspektom 10 minút za hodinu a stlačte tlačidlo, ak chcete zobraziť corre

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *